A similarity measure to assess the stability of classification trees
Bénédicte Briand,
Gilles R. Ducharme,
Vanessa Parache and
Catherine Mercat-Rommens
Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 1208-1217
Abstract:
It has been recognized that Classification trees (CART) are unstable; a small perturbation in the input variables or a fresh sample can lead to a very different classification tree. Some approaches exist that try to correct this instability. However, their benefits can, at present, be appreciated only qualitatively. A similarity measure between two classification trees is introduced that can measure their closeness. Its usefulness is illustrated with synthetic data on the impact of radioactivity deposit through the environment. In this context, a modified node level stabilizing technique, referred to as the NLS-REP method, is introduced and shown to be more stable than the classical CART method.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00497-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:1208-1217
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().