EconPapers    
Economics at your fingertips  
 

Supervised classification using probabilistic decision graphs

Jens D. Nielsen, Rafael Rumí and Antonio Salmerón

Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 1299-1311

Abstract: A new model for supervised classification based on probabilistic decision graphs is introduced. A probabilistic decision graph (PDG) is a graphical model that efficiently captures certain context specific independencies that are not easily represented by other graphical models traditionally used for classification, such as the Naïve Bayes (NB) or Classification Trees (CT). This means that the PDG model can capture some distributions using fewer parameters than classical models. Two approaches for constructing a PDG for classification are proposed. The first is to directly construct the model from a dataset of labelled data, while the second is to transform a previously obtained Bayesian classifier into a PDG model that can then be refined. These two approaches are compared with a wide range of classical approaches to the supervised classification problem on a number of both real world databases and artificially generated data.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00538-0
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:1299-1311

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1299-1311