Estimation in step-stress accelerated life tests for the exponentiated exponential distribution with type-I censoring
Alaa H. Abdel-Hamid and
Essam K. AL-Hussaini
Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 1328-1338
Abstract:
The step-stress accelerated life tests allow the experimenter to increase the stress levels at fixed times during the experiment. The lifetime of a product at any level of stress is assumed to have an exponentiated distribution, whose baseline distribution is a general class of distributions which includes, among others, Weibull, compound Weibull, Pareto, Gompertz, normal and logistic distributions. The scale parameter of the baseline distribution is assumed to be a log-linear function of the stress and a cumulative exposure model holds. Special attention is paid to an exponentiated exponential distribution. Based on type-I censoring, the maximum likelihood estimates of the parameters under consideration are obtained. A Monte Carlo simulation study is carried out to investigate the precision of the maximum likelihood estimates and to obtain the coverage probabilities of the bootstrap confidence intervals for the parameters involved. Finally, an example is presented to illustrate the two discussed methods of bootstrap confidence intervals.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00546-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:1328-1338
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().