A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables
Huan Liu,
Yongqiang Tang and
Hao Helen Zhang
Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 853-856
Abstract:
This note proposes a new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. The unknown parameters are determined by the first four cumulants of the quadratic forms. The proposed method is compared with Pearson's three-moment central [chi]2 approximation approach, by means of numerical examples. Our method yields a better approximation to the distribution of the non-central quadratic forms than Pearson's method, particularly in the upper tail of the quadratic form, the tail most often needed in practical work.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00565-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:853-856
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().