EconPapers    
Economics at your fingertips  
 

Support vector censored quantile regression under random censoring

Jooyong Shim and Changha Hwang

Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 912-919

Abstract: Censored quantile regression models have received a great deal of attention in both the theoretical and applied statistical literature. In this paper, we propose support vector censored quantile regression (SVCQR) under random censoring using iterative reweighted least squares (IRWLS) procedure based on the Newton method instead of usual quadratic programming algorithms. This procedure makes it possible to derive the generalized approximate cross validation (GACV) method for choosing the hyperparameters which affect the performance of SVCQR. Numerical results are then presented which illustrate the performance of SVCQR using the IRWLS procedure.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00495-7
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:912-919

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:912-919