Bayesian posterior mean estimates for Poisson hidden Markov models
Junko Murakami
Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 941-955
Abstract:
This paper focuses on the Bayesian posterior mean estimates (or Bayes' estimate) of the parameter set of Poisson hidden Markov models in which the observation sequence is generated by a Poisson distribution whose parameter depends on the underlining discrete-time time-homogeneous Markov chain. Although the most commonly used procedures for obtaining parameter estimates for hidden Markov models are versions of the expectation maximization and Markov chain Monte Carlo approaches, this paper exhibits an algorithm for calculating the exact posterior mean estimates which, although still cumbersome, has polynomial rather than exponential complexity, and is a feasible alternative for use with small scale models and data sets. This paper also shows simulation results, comparing the posterior mean estimates obtained by this algorithm and the maximum likelihood estimates obtained by expectation maximization approach.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00537-9
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:941-955
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().