Simple and interpretable discrimination
Nickolay T. Trendafilov and
Karen Vines
Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 979-989
Abstract:
A number of approaches have been proposed for constructing alternatives to principal components that are more easily interpretable, while still explaining considerable part of the data variability. One such approach is employed in order to produce interpretable canonical variates and explore their discrimination behavior, which is more complicated as orthogonality with respect to the within-groups sums-of-squares matrix is involved. The proposed simple and interpretable canonical variates are an optimal choice between good and sparse approximation to the original ones, rather than identifying the variables that dominate the discrimination. The numerical algorithms require low computational cost, and are illustrated on the Fisher's iris data and on moderately large real data.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00549-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:979-989
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().