Easily simulated multivariate binary distributions with given positive and negative correlations
Samuel D. Oman
Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 999-1005
Abstract:
We consider the problem of defining a multivariate distribution of binary variables, with given first two moments, from which values can be easily simulated. Oman and Zucker [Oman, S.D., Zucker, D.M., 2001. Modelling and generating correlated binary variables. Biometrika 88, 287-290] have done this when the correlation matrix of the binary variables is the Schur product of a parametric correlation matrix appropriate for normal variables (intraclass, moving average or autoregressive), having non-negative entries, with a matrix whose entries comprise the Fréchet upper bounds on the pairwise correlations of the binary variables. We extend their method to include negative correlations; moreover, we extend the range of positive correlations allowed in the moving-average case. We present algorithms for simulation of data from these distributions, and examine the ranges of correlations obtained.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00559-8
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:999-1005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().