Excess false positive rate caused by population stratification and disease rate heterogeneity in case-control association studies
Zhaohai Li,
Hong Zhang,
Gang Zheng,
Joseph L. Gastwirth and
Mitchell H. Gail
Computational Statistics & Data Analysis, 2009, vol. 53, issue 5, 1767-1781
Abstract:
Case-control association studies using unrelated cases and controls may suffer from potential confounding due to population stratification. Bias and variance distortion caused by population stratification in the commonly used allele-based tests can considerably inflate the Type I error rate. It is shown that the bias vanishes in the absence of disease rate heterogeneity. If only population stratification exists, a proper estimate of the variance of the allele-based test statistic is developed. Using this estimated variance yields a valid Type I error. However, when the frequencies of the allele under study and the disease rates differ among the subpopulations, it is difficult to correct for this bias. Explicit expressions for the excess false positive rate (EFPR) of the test due to bias and variance distortion are derived. It turns out that the bias created when both population stratification and disease rate heterogeneity are present usually has a greater effect on the EFPR than variance distortion. Comprehensive simulation studies strongly support these results.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00089-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:5:p:1767-1781
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().