EconPapers    
Economics at your fingertips  
 

Deviance information criterion (DIC) in Bayesian multiple QTL mapping

Daniel Shriner and Nengjun Yi

Computational Statistics & Data Analysis, 2009, vol. 53, issue 5, 1850-1860

Abstract: Mapping multiple quantitative trait loci (QTL) is commonly viewed as a problem of model selection. Various model selection criteria have been proposed, primarily in the non-Bayesian framework. The deviance information criterion (DIC) is the most popular criterion for Bayesian model selection and model comparison but has not been applied to Bayesian multiple QTL mapping. A derivation of the DIC is presented for multiple interacting QTL models and calculation of the DIC is demonstrated using posterior samples generated by Markov chain Monte Carlo (MCMC) algorithms. The DIC measures posterior predictive error by penalizing the fit of a model (deviance) by its complexity, determined by the effective number of parameters. The effective number of parameters simultaneously accounts for the sample size, the cross design, the number and lengths of chromosomes, covariates, the number of QTL, the type of QTL effects, and QTL effect sizes. The DIC provides a computationally efficient way to perform sensitivity analysis and can be used to quantitatively evaluate if including environmental effects, gene-gene interactions, and/or gene-environment interactions in the prior specification is worth the extra parameterization. The DIC has been implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of Bayesian methodology for genome-wide interacting QTL analysis.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00028-5
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:5:p:1850-1860

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1850-1860