EconPapers    
Economics at your fingertips  
 

Tests for Gaussian graphical models

N. Verzelen and F. Villers

Computational Statistics & Data Analysis, 2009, vol. 53, issue 5, 1894-1905

Abstract: Gaussian graphical models are promising tools for analysing genetic networks. In many applications, biologists have some knowledge of the genetic network and may want to assess the quality of their model using gene expression data. This is why one introduces a novel procedure for testing the neighborhoods of a Gaussian graphical model. It is based on the connection between the local Markov property and conditional regression of a Gaussian random variable. Adapting recent results on tests for high-dimensional Gaussian linear models, one proves that the testing procedure inherits appealing theoretical properties. Besides, it applies and is computationally feasible in a high-dimensional setting: the number of nodes may be much larger than the number of observations. A large part of the study is devoted to illustrating and discussing applications to simulated data and to biological data.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00450-7
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:5:p:1894-1905

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1894-1905