EconPapers    
Economics at your fingertips  
 

Information importance of predictors: Concept, measures, Bayesian inference, and applications

J.J. Retzer, E.S. Soofi and R. Soyer

Computational Statistics & Data Analysis, 2009, vol. 53, issue 6, 2363-2377

Abstract: The importance of predictors is characterized by the extent to which their use reduces uncertainty about predicting the response variable, namely their information importance. The uncertainty associated with a probability distribution is a concave function of the density such that its global maximum is a uniform distribution reflecting the most difficult prediction situation. Shannon entropy is used to operationalize the concept. For nonstochastic predictors, maximum entropy characterization of probability distributions provides measures of information importance. For stochastic predictors, the expected entropy difference gives measures of information importance, which are invariant under one-to-one transformations of the variables. Applications to various data types lead to familiar statistical quantities for various models, yet with the unified interpretation of uncertainty reduction. Bayesian inference procedures for the importance and relative importance of predictors are developed. Three examples show applications to normal regression, contingency table, and logit analyses.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00156-4
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:6:p:2363-2377

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2363-2377