Simulated minimum Hellinger distance estimation of stochastic volatility models
Teruko Takada
Computational Statistics & Data Analysis, 2009, vol. 53, issue 6, 2390-2403
Abstract:
A simultaneously efficient and robust approach for distribution-free parametric inference, called the simulated minimum Hellinger distance (SMHD) estimator, is proposed. In the SMHD estimation, the Hellinger distance between the nonparametrically estimated density of the observed data and that of the simulated samples from the model is minimized. The method is applicable to the situation where the closed-form expression of the model density is intractable but simulating random variables from the model is possible. The robustness of the SMHD estimator is equivalent to the minimum Hellinger distance estimator. The finite sample efficiency of the proposed methodology is found to be comparable to the Bayesian Markov chain Monte Carlo and maximum likelihood Monte Carlo methods and outperform the efficient method of moments estimators. The robustness of the method to a stochastic volatility model is demonstrated by a simulation study. An empirical application to the weekly observations of foreign exchange rates is presented.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00325-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:6:p:2390-2403
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().