EconPapers    
Economics at your fingertips  
 

Boosting nonlinear additive autoregressive time series

Nivien Shafik and Gerhard Tutz

Computational Statistics & Data Analysis, 2009, vol. 53, issue 7, 2453-2464

Abstract: Several methods for the analysis of nonlinear time series models have been proposed. As in linear autoregressive models the main problems are model identification, estimation and prediction. A boosting method is proposed that performs model identification and estimation simultaneously within the framework of nonlinear autoregressive time series. The method allows one to select influential terms from a large number of potential lags and exogenous variables. The influence of the selected terms is modeled by an expansion in basis function allowing for a flexible additive form of the predictor. The approach is very competitive in particular in high dimensional settings where alternative fitting methods fail. This is demonstrated by means of simulations and two applications to real world data.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00571-9
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:7:p:2453-2464

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2453-2464