Sharp quadratic majorization in one dimension
Jan de Leeuw and
Kenneth Lange
Computational Statistics & Data Analysis, 2009, vol. 53, issue 7, 2471-2484
Abstract:
Majorization methods solve minimization problems by replacing a complicated problem by a sequence of simpler problems. Solving the sequence of simple optimization problems guarantees convergence to a solution of the complicated original problem. Convergence is guaranteed by requiring that the approximating functions majorize the original function at the current solution. The leading examples of majorization are the EM algorithm and the SMACOF algorithm used in Multidimensional Scaling. The simplest possible majorizing subproblems are quadratic, because minimizing a quadratic is easy to do. In this paper quadratic majorizations for real-valued functions of a real variable are analyzed, and the concept of sharp majorization is introduced and studied. Applications to logit, probit, and robust loss functions are discussed.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00003-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:7:p:2471-2484
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().