EconPapers    
Economics at your fingertips  
 

Shrinkage estimation in general linear models

Lihua An, Sévérien Nkurunziza, Karen Y. Fung, Daniel Krewski and Isaac Luginaah

Computational Statistics & Data Analysis, 2009, vol. 53, issue 7, 2537-2549

Abstract: We propose a James-Stein-type shrinkage estimator for the parameter vector in a general linear model when it is suspected that some of the parameters may be restricted to a subspace. The James-Stein estimator is shown to demonstrate asymptotically superior risk performance relative to the conventional least squares estimator under quadratic loss. An extensive simulation study based on a multiple linear regression model and a logistic regression model further demonstrates the improved performance of this James-Stein estimator in finite samples. The application of this new estimator is illustrated using Ontario newborn infants data spanning four fiscal years.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00566-5
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:7:p:2537-2549

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2537-2549