A latent variable regression model for capture-recapture data
Joanne Thandrayen and
Yan Wang
Computational Statistics & Data Analysis, 2009, vol. 53, issue 7, 2740-2746
Abstract:
Capture-recapture methods are used to estimate the prevalence of diseases in the field of epidemiology. The information used for estimation purposes are available from multiple lists, whereby giving rise to the problems of list dependence and heterogeneity. In this paper, modelling is focused on the heterogeneity part. We present a new binomial latent class model which takes into account both the observed and unobserved heterogeneity within capture-recapture data. We adopt the conditional likelihood approach and perform estimation via the EM algorithm. We also derive the mathematical expressions for the computation of the standard error of the unknown population size. An application to data on diabetes patients in a town in northern Italy is discussed.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00031-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:7:p:2740-2746
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().