Testing for heteroskedasticity and spatial correlation in a random effects panel data model
Badi Baltagi,
Seuck Heun Song and
Jae Hyeok Kwon
Computational Statistics & Data Analysis, 2009, vol. 53, issue 8, 2897-2922
Abstract:
A panel data regression model with heteroskedastic as well as spatially correlated disturbances is considered, and a joint LM test for homoskedasticity and no spatial correlation is derived. In addition, a conditional LM test for no spatial correlation given heteroskedasticity, as well as a conditional LM test for homoskedasticity given spatial correlation, are also derived. These LM tests are compared with marginal LM tests that ignore heteroskedasticity in testing for spatial correlation, or spatial correlation in testing for homoskedasticity. Monte Carlo results show that these LM tests, as well as their LR counterparts, perform well, even for small N and T. However, misleading inferences can occur when using marginal, rather than joint or conditional LM tests when spatial correlation or heteroskedasticity is present.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00322-8
Full text for ScienceDirect subscribers only.
Related works:
Working Paper: Testing for Heteroskedasticity and Spatial Correlation in a Random Effects Panel Data Model (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:8:p:2897-2922
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().