An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice
Oleg A. Smirnov and
Luc Anselin ()
Computational Statistics & Data Analysis, 2009, vol. 53, issue 8, 2980-2988
Abstract:
A parallel method for computing the log of the Jacobian of variable transformations in models of spatial interactions on a lattice is developed. The method is shown to be easy to implement in parallel and distributed computing environments. The advantages of parallel computations are significant even in computer systems with low numbers of processing units, making it computationally efficient in a variety of settings. The non-iterative method is feasible for any sparse spatial weights matrix since the computations involved impose modest memory requirements for storing intermediate results. The method has a linear computational complexity for datasets with a finite Hausdorff dimension. It is shown that most geo-spatial data satisfy this requirement. Asymptotic properties of the method are illustrated using simulated data, and the method is deployed for obtaining maximum likelihood estimates for the spatial autoregressive model using data for the US economy.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00485-4
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:8:p:2980-2988
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().