EconPapers    
Economics at your fingertips  
 

Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models

Emily L. Kang, Desheng Liu and Noel Cressie

Computational Statistics & Data Analysis, 2009, vol. 53, issue 8, 3016-3032

Abstract: Data associated with spatially contiguous small areas may be modeled via regression on covariates, with error terms that are either independent or are spatially dependent according to which areas are neighbors of each other. But the data may have extra components of variability due to measurement error, which a careful statistical analysis should filter out. The combination of these possibilities leads to four models, three of which are special cases of the fourth: the spatial hierarchical model. A number of new results are developed for the analysis of small-area data: estimation of the measurement-error variance; diagnostics to determine which model fits and predicts better; and a sensitivity analysis to compare an empirical-Bayesian analysis to a Bayesian analysis. A small-area dataset of doctors' prescription amounts per consultation is fitted to all four types of models and used to illustrate the spatial methodology.

Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00358-7
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:8:p:3016-3032

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3016-3032