Diagnostics for regression dependence in tables re-ordered by the dominant correspondence analysis solution
Matthijs J. Warrens and
Willem J. Heiser
Computational Statistics & Data Analysis, 2009, vol. 53, issue 8, 3139-3144
Abstract:
Correspondence analysis is an exploratory technique for analyzing the interaction in a contingency table. Tables with meaningful orders of the rows and columns may be analyzed using a model-based correspondence analysis that incorporates order constraints. However, if there exists a permutation of the rows and columns of the contingency table so that the rows are regression dependent on the columns and, vice versa, the columns are regression dependent on the rows, then both implied orders are reflected in the first dimension of the unconstrained correspondence analysis [Schriever, B.F., 1983. Scaling of order dependent categorical variables with correspondence analysis. International Statistical Review 51, 225-238]. Thus, using unconstrained correspondence analysis, we may still find that the data fit an ordinal stochastic model. Fit measures are formulated that may be used to verify whether the re-ordered contingency table is regression dependent in either the rows or columns. Using several data examples, it is shown that the fit indices may complement the usual geometric interpretation of the unconstrained correspondence analysis solution in low-dimensional space.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00384-8
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:8:p:3139-3144
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().