Clustering and disjoint principal component analysis
Maurizio Vichi and
Gilbert Saporta
Computational Statistics & Data Analysis, 2009, vol. 53, issue 8, 3194-3208
Abstract:
A constrained principal component analysis, which aims at a simultaneous clustering of objects and a partitioning of variables, is proposed. The new methodology allows us to identify components with maximum variance, each one a linear combination of a subset of variables. All the subsets form a partition of variables. Simultaneously, a partition of objects is also computed maximizing the between cluster variance. The methodology is formulated in a semi-parametric least-squares framework as a quadratic mixed continuous and integer problem. An alternating least-squares algorithm is proposed to solve the clustering and disjoint PCA. Two applications are given to show the features of the methodology.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00293-4
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:8:p:3194-3208
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().