EconPapers    
Economics at your fingertips  
 

Empirical likelihood based diagnostics for heteroscedasticity in partial linear models

Heung Wong, Feng Liu, Min Chen and Wai Cheung Ip

Computational Statistics & Data Analysis, 2009, vol. 53, issue 9, 3466-3477

Abstract: In this paper, we propose a diagnostic technique for checking heteroscedasticity based on empirical likelihood for the partial linear models. We construct an empirical likelihood ratio test for heteroscedasticity. Also, under mild conditions, a nonparametric version of Wilk's theorem is derived, which says that our proposed test has an asymptotic chi-square distribution. Simulation results reveal that the finite sample performance of our proposed test is satisfactory in both size and power. An empirical likelihood bootstrap simulation is also conducted to overcome the size distortion in small sample sizes.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00069-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:9:p:3466-3477

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:9:p:3466-3477