EconPapers    
Economics at your fingertips  
 

Early stopping in L2Boosting

Yuan-Chin Ivan Chang, Yufen Huang and Yu-Pai Huang

Computational Statistics & Data Analysis, 2010, vol. 54, issue 10, 2203-2213

Abstract: It is well known that the boosting-like algorithms, such as AdaBoost and many of its modifications, may over-fit the training data when the number of boosting iterations becomes large. Therefore, how to stop a boosting algorithm at an appropriate iteration time is a longstanding problem for the past decade (see Meir and Rätsch, 2003). Bühlmann and Yu (2005) applied model selection criteria to estimate the stopping iteration for L2Boosting, but it is still necessary to compute all boosting iterations under consideration for the training data. Thus, the main purpose of this paper is focused on studying the early stopping rule for L2Boosting during the training stage to seek a very substantial computational saving. The proposed method is based on a change point detection method on the values of model selection criteria during the training stage. This method is also extended to two-class classification problems which are very common in medical and bioinformatics applications. A simulation study and a real data example to these approaches are provided for illustrations, and comparisons are made with LogitBoost.

Keywords: AICc; BIC; gMDL; Change; point; detection; method; L2Boosting; LogitBoost; Stopping; rule (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00126-X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:10:p:2203-2213

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:10:p:2203-2213