Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables
Ian White,
Rhian Daniel () and
Patrick Royston
Computational Statistics & Data Analysis, 2010, vol. 54, issue 10, 2267-2275
Abstract:
Multiple imputation is a popular way to handle missing data. Automated procedures are widely available in standard software. However, such automated procedures may hide many assumptions and possible difficulties from the view of the data analyst. Imputation procedures such as monotone imputation and imputation by chained equations often involve the fitting of a regression model for a categorical outcome. If perfect prediction occurs in such a model, then automated procedures may give severely biased results. This is a problem in some standard software, but it may be avoided by bootstrap methods, penalised regression methods, or a new augmentation procedure.
Keywords: Missing; data; Multiple; imputation; Perfect; prediction; Separation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00149-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:10:p:2267-2275
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().