EconPapers    
Economics at your fingertips  
 

Estimating the mixing proportion in a semiparametric mixture model

Seongjoo Song, Dan L. Nicolae and Jongwoo Song

Computational Statistics & Data Analysis, 2010, vol. 54, issue 10, 2276-2283

Abstract: In this paper, we investigate methods of estimating the mixing proportion in the case when one of the probability densities is not specified analytically in a mixture model. The methodology we propose is motivated by a sequential clustering algorithm. After a sequential clustering algorithm finds the center of a cluster, the next step is to identify observations belonging to that cluster. If we assume that the center of the cluster is known and that the distribution of observations not belonging to the cluster is unknown, the problem of identifying observations in the cluster is similar to the problem of estimating the mixing proportion in a special two-component mixture model. The mixing proportion can be considered as the proportion of observations belonging to the cluster. We propose two estimators for parameters in the model and compare the performance of these two estimators in several different cases.

Keywords: Clustering; Semiparametric; mixture; model (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00152-0
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:10:p:2276-2283

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:10:p:2276-2283