Joint forecasts of Dow Jones stocks under general multivariate loss function
Tansel Alp and
Matei Demetrescu
Computational Statistics & Data Analysis, 2010, vol. 54, issue 11, 2360-2371
Abstract:
When forecasts are assessed by a general loss (cost-of-error) function, the optimal point forecast is, in general, not the conditional mean, and depends on the conditional volatility--which, for stock returns, is time-varying. In order to provide forecasts of daily returns of 30 DJIA stocks under a general multivariate loss function, the following issues are addressed. We discuss what conditions define a multivariate loss function, and a simple class of such functions is proposed. Based on suitable combinations of univariate losses, the suggested multivariate functions are convenient for practical applications with many variables. To keep the computational aspect tractable, a flexible multivariate GARCH model is employed in estimating the conditional forecast distributions. The model easily copes with large number of series while allowing for skewness, fat tails, non-ellipticity, and tail dependence. Based on Engle's DCC GARCH, it uses multivariate affine generalized hyperbolic distributions as conditional probability law, and the number of parameters to be estimated simultaneously does not depend on the number of series. The model is fitted using daily data from 2002 to 2007 (keeping data from 2008 for out-of-sample forecasts), and a bootstrap procedure is used to derive point forecasts under several multivariate loss functions of the proposed type.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00357-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:11:p:2360-2371
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().