EconPapers    
Economics at your fingertips  
 

Automated variable selection in vector multiplicative error models

Fabrizio Cipollini () and Giampiero Gallo ()

Computational Statistics & Data Analysis, 2010, vol. 54, issue 11, 2470-2486

Abstract: Multiplicative Error Models (MEM) can be used to trace the dynamics of non-negative valued processes. Interactions between several such processes are accommodated by the vector MEM (vMEM) in the form of parametric (estimated by Maximum Likelihood) or semiparametric specifications (estimated by Generalized Method of Moments). In choosing the relevant variables an automated procedure can be followed where the full specification is successively pruned in a general-to-specific approach. An efficient and fast algorithm is presented and evaluated by means of simulations. The empirical application shows the interdependence across European markets and the relative strength of volatility spillovers.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00276-X
Full text for ScienceDirect subscribers only.

Related works:
Working Paper: Automated Variable Selection in Vector Multiplicative Error Models (2009) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:11:p:2470-2486

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2470-2486