Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes
Jim Griffin and
Mark Steel
Computational Statistics & Data Analysis, 2010, vol. 54, issue 11, 2594-2608
Abstract:
Continuous superpositions of Ornstein-Uhlenbeck processes are proposed as a model for asset return volatility. An interesting class of continuous superpositions is defined by a Gamma mixing distribution which can define long memory processes. In contrast, previously studied discrete superpositions cannot generate this behaviour. Efficient Markov chain Monte Carlo methods for Bayesian inference are developed which allow the estimation of such models with leverage effects. The continuous superposition model is applied to both stock index and exchange rate data. The continuous superposition model is compared with a two-component superposition on the daily Standard and Poor's 500 index from 1980 to 2000.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00238-2
Full text for ScienceDirect subscribers only.
Related works:
Working Paper: Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:11:p:2594-2608
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().