EconPapers    
Economics at your fingertips  
 

Forecasting volatility under fractality, regime-switching, long memory and student-t innovations

Thomas Lux and Leonardo Morales-Arias

Computational Statistics & Data Analysis, 2010, vol. 54, issue 11, 2676-2692

Abstract: The Markov-switching Multifractal model of asset returns with Student-t innovations (MSM-t henceforth) is introduced as an extension to the Markov-switching Multifractal model of asset returns (MSM). The MSM-t can be estimated via Maximum Likelihood (ML) and Generalized Method of Moments (GMM) and volatility forecasting can be performed via Bayesian updating (ML) or best linear forecasts (GMM). Monte Carlo simulations show that using GMM plus linear forecasts leads to minor losses in efficiency compared to optimal Bayesian forecasts based on ML estimates. The forecasting capability of the MSM-t model is evaluated empirically in a comprehensive panel forecasting analysis with three different cross-sections of assets at the country level (all-share equity indices, bond indices and real estate security indices). Empirical forecasts of the MSM-t model are compared to those obtained from its Gaussian counterparts and other volatility models of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family. In terms of mean absolute errors (mean squared errors), the MSM-t (Gaussian MSM) dominates all other models at most forecasting horizons for the various asset classes considered. Furthermore, forecast combinations obtained from the MSM and (Fractionally Integrated) GARCH models provide an improvement upon forecasts from single models.

Keywords: Multiplicative; volatility; models; Long; memory; Student-t; innovations; International; volatility; forecasting (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00107-6
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:11:p:2676-2692

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2676-2692