EconPapers    
Economics at your fingertips  
 

Non-linear time series clustering based on non-parametric forecast densities

J.A. Vilar, A.M. Alonso and J.M. Vilar

Computational Statistics & Data Analysis, 2010, vol. 54, issue 11, 2850-2865

Abstract: The problem of clustering time series is studied for a general class of non-parametric autoregressive models. The dissimilarity between two time series is based on comparing their full forecast densities at a given horizon. In particular, two functional distances are considered: L1 and L2. As the forecast densities are unknown, they are approximated using a bootstrap procedure that mimics the underlying generating processes without assuming any parametric model for the true autoregressive structure of the series. The estimated forecast densities are then used to construct the dissimilarity matrix and hence to perform clustering. Asymptotic properties of the proposed method are provided and an extensive simulation study is carried out. The results show the good behavior of the procedure for a wide variety of nonlinear autoregressive models and its robustness to non-Gaussian innovations. Finally, the proposed methodology is applied to a real dataset involving economic time series.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00067-X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:11:p:2850-2865

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2850-2865