EconPapers    
Economics at your fingertips  
 

Globally robust confidence intervals for simple linear regression

Jorge Adrover and Matias Salibian-Barrera

Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 2899-2913

Abstract: It is well known that when the data may contain outliers or other departures from the assumed model, classical inference methods can be seriously affected and yield confidence levels much lower than the nominal ones. This paper proposes robust confidence intervals and tests for the parameters of the simple linear regression model that maintain their coverage and significance level, respectively, over whole contamination neighbourhoods. This approach can be used with any consistent regression estimator for which maximum bias curves are tabulated, and thus it is more widely applicable than previous proposals in the literature. Although the results regarding the coverage level of these confidence intervals are asymptotic in nature, simulation studies suggest that these robust inference procedures work well for small samples, and compare very favourably with earlier proposals in the literature.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00192-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:2899-2913

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:2899-2913