Fast robust estimation of prediction error based on resampling
Jafar A. Khan,
Stefan Van Aelst and
Ruben H. Zamar
Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3121-3130
Abstract:
Robust estimators of the prediction error of a linear model are proposed. The estimators are based on the resampling techniques cross-validation and bootstrap. The robustness of the prediction error estimators is obtained by robustly estimating the regression parameters of the linear model and by trimming the largest prediction errors. To avoid the recalculation of time-consuming robust regression estimates, fast approximations for the robust estimates of the resampled data are used. This leads to time-efficient and robust estimators of prediction error.
Keywords: Bootstrap; Cross-validation; Prediction; error; Robustness (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00046-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3121-3130
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().