Sparse CCA using a Lasso with positivity constraints
Anastasia Lykou and
Joe Whittaker
Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3144-3157
Abstract:
Canonical correlation analysis (CCA) describes the relationship between two sets of variables by finding linear combinations of the variables with maximal correlation. A sparse version of CCA is proposed that reduces the chance of including unimportant variables in the canonical variates and thus improves their interpretation. A version of the Lasso algorithm incorporating positivity constraints is implemented in tandem with alternating least squares (ALS), to obtain sparse canonical variates. The proposed method is demonstrated on simulation studies and a data set from market basket analysis.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00278-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3144-3157
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().