A diagnostic method for simultaneous feature selection and outlier identification in linear regression
Rajiv S. Menjoge and
Roy E. Welsch
Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3181-3193
Abstract:
A diagnostic method along the lines of forward search is proposed to simultaneously study the effect of individual observations and features on the inferences made in linear regression. The method operates by appending dummy variables to the data matrix and performing backward selection on the augmented matrix. It outputs sequences of feature-outlier combinations which can be evaluated by plots similar to those of forward search and includes the capacity to incorporate prior knowledge, in order to mitigate issues such as collinearity. It also allows for alternative ways to understand the selection of the final model. The method is evaluated on five data sets and yields promising results.
Keywords: Robust; statistics; Forward; search; Robust; feature; selection (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00079-4
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3181-3193
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().