Default Bayesian model determination methods for generalised linear mixed models
Antony M. Overstall and
Jonathan J. Forster
Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3269-3288
Abstract:
A default strategy for fully Bayesian model determination for generalised linear mixed models (GLMMs) is considered which addresses the two key issues of default prior specification and computation. In particular, the concept of unit-information priors is extended to the parameters of a GLMM. A combination of Markov chain Monte Carlo (MCMC) and Laplace approximations is used to compute approximations to the posterior model probabilities to find a subset of models with high posterior model probability. Bridge sampling is then used on the models in this subset to approximate the posterior model probabilities more accurately. The strategy is applied to four examples.
Keywords: Unit-information; priors; Bridge; sampling; MCMC; Laplace; approximation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00110-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3269-3288
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().