Bayesian variable selection for Poisson regression with underreported responses
Stephanie Powers,
Richard Gerlach and
James Stamey
Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3289-3299
Abstract:
Variable selection for Poisson regression when the response variable is potentially underreported is considered. A logistic regression model is used to model the latent underreporting probabilities. An efficient MCMC sampling scheme is designed, incorporating uncertainty about which explanatory variables affect the dependent variable and which affect the underreporting probabilities. Validation data is required in order to identify and estimate all parameters. A simulation study illustrates favorable results both in terms of variable selection and parameter estimation. Finally, the procedure is applied to a real data example concerning deaths from cervical cancer.
Keywords: Misclassification; Poisson; regression; MCMC; Model; uncertainty (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00147-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3289-3299
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().