EconPapers    
Economics at your fingertips  
 

New approaches to compute Bayes factor in finite mixture models

M.J. Rufo, J. Martín and C.J. Pérez

Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3324-3335

Abstract: Two new approaches to estimate Bayes factors in a finite mixture model context are proposed. Specifically, two algorithms to estimate them and their errors are derived by decomposing the resulting marginal densities. Then, through Bayes factor comparisons, the appropriate number of components for the mixture model is obtained. The approaches are based on simple theory (Monte Carlo methods and cluster sampling), what makes them appealing tools in this context. The performance of both algorithms is studied for different situations and the procedures are illustrated with some previously published data sets.

Keywords: Bayes; factor; Cluster; sampling; Conjugate; prior; distribution; Finite; mixture; model; Marginal; distribution; Monte; Carlo; methods (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00189-1
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3324-3335

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3324-3335