Stepwise estimation of common principal components
Nickolay T. Trendafilov
Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3446-3457
Abstract:
The standard common principal components (CPCs) may not always be useful for simultaneous dimensionality reduction in k groups. Moreover, the original FG algorithm finds the CPCs in arbitrary order, which does not reflect their importance with respect to the explained variance. A possible alternative is to find an approximate common subspace for all k groups. A new stepwise estimation procedure for obtaining CPCs is proposed, which imitates standard PCA. The stepwise CPCs facilitate simultaneous dimensionality reduction, as their variances are decreasing at least approximately in all k groups. Thus, they can be a better alternative for dimensionality reduction than the standard CPCs. The stepwise CPCs are found sequentially by a very simple algorithm, based on the well-known power method for a single covariance/correlation matrix. Numerical illustrations on well-known data are considered.
Keywords: Simultaneous; diagonalization; Dimensionality; reduction; Power; iterations; for; k; symmetric; positive; definite; matrices (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00112-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3446-3457
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().