EconPapers    
Economics at your fingertips  
 

Fast surrogates of U-statistics

N. Lin and R. Xi

Computational Statistics & Data Analysis, 2010, vol. 54, issue 1, 16-24

Abstract: U-statistics have long been known as a class of nonparametric estimators with good theoretical properties such as unbiasedness and asymptotic normality. However, their applications in modern statistical analysis are limited due to the high computational complexity, especially when massive data sets are becoming more and more common nowadays. In this paper, using the "divide-and-conquer" technique, we developed two surrogates of the U-statistics, aggregated U-statistics and average aggregated U-statistics, both of which are shown asymptotically equivalent to U-statistics and computationally much more efficient. When dividing the raw data set into K subsets, the two proposed estimators reduce the computational complexity from O(Nm) to O(K(N/K)m), which results in significant time reduction as long as K=o(N) and m>=2. The merit of the two proposed statistics is demonstrated by both simulation studies and real data examples.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00280-1
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:1:p:16-24

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:16-24