EconPapers    
Economics at your fingertips  
 

A Bayesian approach to sample size determination for studies designed to evaluate continuous medical tests

Dunlei Cheng, Adam J. Branscum and James Stamey

Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 298-307

Abstract: We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical tests. For studies that involve one test or two conditionally independent or dependent tests, we present methods that are applicable when the true disease status of sampled individuals will be available and when it will not. Within a hypothesis testing framework, we consider the goal of demonstrating that a medical test has area under the receiver operating characteristic (ROC) curve that exceeds a minimum acceptable level or another relevant threshold, and the goals of establishing the superiority or equivalence of one test relative to another. A Bayesian average power criterion is used to determine a sample size that will yield high posterior probability, on average, of a future study correctly deciding in favor of these goals. The impacts on Bayesian average power of prior distributions, the proportion of diseased subjects in the study, and correlation among tests are investigated through simulation. The computational algorithm we develop involves simulating multiple data sets that are fit with Bayesian models using Gibbs sampling, and is executed by using WinBUGS in tandem with R.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00354-5
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:298-307

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:298-307