Multiple change-point detection of multivariate mean vectors with the Bayesian approach
Sooyoung Cheon and
Jaehee Kim
Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 406-415
Abstract:
Bayesian multiple change-point models are proposed for multivariate means. The models require that the data be from a multivariate normal distribution with a truncated Poisson prior for the number of change-points and conjugate priors for the distributional parameters. We apply the stochastic approximation Monte Carlo (SAMC) algorithm to the multiple change-point detection problems. Numerical results show that SAMC makes a significant improvement over RJMCMC for complex Bayesian model selection problems in change-point estimation.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00318-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:406-415
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().