A two-component Weibull mixture to model early and late mortality in a Bayesian framework
Alessio Farcomeni and
Alessandra Nardi
Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 416-428
Abstract:
A two-component parametric mixture is proposed to model survival after an invasive treatment, when patients may experience different hazards regimes: a risk of early mortality directly related to the treatment and/or the treated condition, and a risk of late death influenced by several exogenous factors. The parametric mixture is based on Weibull distributions for both components. Different sets of covariates can affect the Weibull scale parameters and the probability of belonging to one of the two latent classes. A logarithmic function is used to link explanatory variables to scale parameters while a logistic link is assumed for the probability of the latent classes. Inference about unknown parameters is developed in a Bayesian framework: point and interval estimates are based on posterior distributions, whereas the Schwarz criterion is used for testing hypotheses. The advantages of the approach are illustrated by analyzing data from an aorta aneurysm study.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00323-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:416-428
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().