Distance-based local linear regression for functional predictors
Eva Boj,
Pedro Delicado and
Josep Fortiana
Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 429-437
Abstract:
The problem of nonparametrically predicting a scalar response variable from a functional predictor is considered. A sample of pairs (functional predictor and response) is observed. When predicting the response for a new functional predictor value, a semi-metric is used to compute the distances between the new and the previously observed functional predictors. Then each pair in the original sample is weighted according to a decreasing function of these distances. A Weighted (Linear) Distance-Based Regression is fitted, where the weights are as above and the distances are given by a possibly different semi-metric. This approach can be extended to nonparametric predictions from other kinds of explanatory variables (e.g., data of mixed type) in a natural way.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00326-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:429-437
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().