On the generative-discriminative tradeoff approach: Interpretation, asymptotic efficiency and classification performance
Jing-Hao Xue and
D. Michael Titterington
Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 438-451
Abstract:
The interpretation of generative, discriminative and hybrid approaches to classification is discussed, in particular for the generative-discriminative tradeoff (GDT), a hybrid approach. The asymptotic efficiency of the GDT, relative to that of its generative or discriminative counterpart, is presented theoretically and, by using linear normal discrimination as an example, numerically. On real and simulated datasets, the classification performance of the GDT is compared with those of normal-based linear discriminant analysis (LDA) and linear logistic regression (LLR). Four arguments are made as follows. First, the GDT is a generative model integrating both discriminative and generative learning. It is therefore subject to model misspecification of the data-generating process and hindered by complex optimisation. Secondly, among the three approaches being compared, the asymptotic efficiency of the GDT is higher than that of the discriminative approach but lower than that of the generative approach, when no model misspecification occurs. Thirdly, without model misspecification, LDA performs the best; with model misspecification, LLR or the GDT with an optimal, large weight on its discriminative component may perform the best. Finally, LLR is affected by the imbalance between groups of data.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00327-2
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:438-451
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().