EconPapers    
Economics at your fingertips  
 

Least squares estimation of nonlinear spatial trends

Rosa M. Crujeiras and Ingrid Van Keilegom ()

Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 452-465

Abstract: Results on asymptotic and finite sample properties of an estimator of a nonlinear regression function when errors are spatially correlated, and when the spatial dependence structure is unknown are derived. The proposed method is based on a generalized nonlinear least squares approach, taking into account the spatial covariance. Weak consistency of the regression parameters estimator is derived, along with its asymptotic Gaussian limit. The behavior of the proposed estimator is illustrated with a simulation study, considering different correlation structures in and a more general case including a spatial covariate. The method is also applied to two real data cases.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00330-2
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:452-465

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:452-465