On nonparametric local inference for density estimation
Ngai-Hang Chan,
Thomas C.M. Lee and
Liang Peng
Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 509-515
Abstract:
Bandwidth selection has been an important topic in nonparametric density estimation. In this paper an effective method for local bandwidth selection is proposed. For local bandwidth selection, due to data sparsity and other reasons, extremely small bandwidths are sometimes selected, which lead to severe undersmoothing. To circumvent this difficulty, the main idea behind the proposed method is to choose the largest bandwidth that still achieves the optimal rate. When coupled with practical bias reduction techniques, the bandwidth selected from this method can be applied simultaneously to conduct both local point and interval estimation. Simulation studies demonstrate the effectiveness of the proposed approach, which compares favorably with other existing approaches.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00351-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:509-515
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().