Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy
Albert Vexler and
Gregory Gurevich
Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 531-545
Abstract:
The likelihood approach based on the empirical distribution functions is a well-accepted statistical tool for testing. However, the proof schemes of the Neyman-Pearson type lemmas induce consideration of density-based likelihood ratios to obtain powerful test statistics. In this article, we introduce the distribution-free density-based likelihood technique, applied to test for goodness-of-fit. We focus on tests for normality and uniformity, which are common tasks in applied studies. The well-known goodness-of-fit tests based on sample entropy are shown to be a product of the proposed empirical likelihood (EL) methodology. Although the efficiency of test statistics based on classes of entropy estimators has been widely addressed in the statistical literature, estimation of the sample entropy has been not invariantly defined, and hence this estimation produces tests that are difficult to be applied to real data studies. The proposed EL approach defines clear forms of the entropy-based tests. Monte Carlo simulation results confirm the preference of the proposed method from a power perspective. Real data examples study the proposed approach in practice.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00355-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:531-545
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().