EconPapers    
Economics at your fingertips  
 

An approximate Bayesian approach for quantitative trait loci estimation

Yu-Ling Chang, Fei Zou and Fred A. Wright

Computational Statistics & Data Analysis, 2010, vol. 54, issue 2, 565-574

Abstract: Bayesian approaches have been widely used in quantitative trait locus (QTL) linkage analysis in experimental crosses, and have advantages in interpretability and in constructing parameter probability intervals. Most existing Bayesian linkage methods involve Monte Carlo sampling, which is computationally prohibitive for high-throughput applications such as eQTL analysis. In this paper, we present a Bayesian linkage model that offers directly interpretable posterior densities or Bayes factors for linkage. For our model, we employ the Laplace approximation for integration over nuisance parameters in backcross (BC) and F2 intercross designs. Our approach is highly accurate, and very fast compared with alternatives, including grid search integration, importance sampling, and Markov Chain Monte Carlo (MCMC). Our approach is thus suitable for high-throughput applications. Simulated and real datasets are used to demonstrate our proposed approach.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00359-4
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:2:p:565-574

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:565-574