Using combinatorial optimization in model-based trimmed clustering with cardinality constraints
María Teresa Gallegos and
Gunter Ritter
Computational Statistics & Data Analysis, 2010, vol. 54, issue 3, 637-654
Abstract:
Statistical clustering criteria with free scale parameters and unknown cluster sizes are inclined to create small, spurious clusters. To mitigate this tendency a statistical model for cardinality-constrained clustering of data with gross outliers is established, its maximum likelihood and maximum a posteriori clustering criteria are derived, and their consistency and robustness are analyzed. The criteria lead to constrained optimization problems that can be solved by using iterative, alternating trimming algorithms of k-means type. Each step in the algorithms requires the solution of a [lambda]-assignment problem known from combinatorial optimization. The method allows one to estimate the numbers of clusters and outliers. It is illustrated with a synthetic data set and a real one.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00311-9
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:3:p:637-654
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().